
Using HTML5 Visualizations
in Software Fault Localization

Carlos Gouveia, José Campos, Rui Abreu
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

{carlos.gouveia, jose.carlos.campos}@fe.up.pt, rui@computer.org

Abstract—Testing and debugging is the most expensive, error-
prone phase in the software development life cycle. Automated
software fault localization can drastically improve the efficiency
of this phase, thus improving the overall quality of the software.
Amongst the most well-known techniques, due to its efficiency
and effectiveness, is spectrum-based fault localization. In this
paper, we propose three dynamic graphical forms using HTML5
to display the diagnostic reports yielded by spectrum-based
fault localization. The visualizations proposed, namely Sunburst,
Vertical Partition, and Bubble Hierarchy, have been implemented
within the GZOLTAR toolset, replacing previous and less-intuitive
OpenGL-based visualizations. The GZOLTAR toolset is a plug-
and-play plugin for the Eclipse IDE to ease world-wide adoption.
Finally, we performed an user study with GZOLTAR and con-
firmed that the visualizations help to drastically reduce the time
needed in debugging (e.g., all participants using the visualizations
were able to pinpoint the fault, whereas of those using traditional
methods only 35% found the fault). The group that used the
visualizations took on average 9 minutes and 17 seconds less
than the group that did not use them.

Index Terms—Automatic Debugging; Reports; Visualizations;
GZOLTAR.

I. INTRODUCTION

It is a fact of life that most software systems (except for just
a few basic systems in controlled environments) have a high
probability of containing faults, being many of them detected
only after a long period of use. Moreover, the testing and de-
bugging phase is the most unpredictable with respect to effort
and costs of the software development life-cycle [1]. Despite
the number of automatic testing and debugging techniques
proposed in recent years, software developers still perform it
mainly using manual approaches, such as prints in the code
and breakpoints. The lack of integration between the multiple
automatic testing and debugging techniques hinders world-
wide adoption by the developers.

Recently, we developed a toolset aiming at helping the
developer through this, rather cumbersome, testing and debug-
ging phase. The tool - coined GZOLTAR1 [2] - is offered as
a plugin for the well-known Eclipse Integrated Development
Environment (IDE) [3]. It runs on Microsoft Windows, Apple
Mac OS and Linux, either 32 or 64-bit architecture systems.

1Note that GZOLTAR also provides techniques for managing regression testing
of JUnit test suites (such as minimization), which can potentially reduce the
effort (in terms of time) for re-testing the software system.

GZOLTAR takes as input the coverage information of the
executed test cases to run a Spectrum-based Fault Localization
(SFL) technique [4]. The SFL technique offered by GZOLTAR
is the Ochiai, first proposed in [5], and known to be amongst
the best SFL techniques available. This technique yields a
ranked list in order of suspiciousness of a component (a
component may be a project, a package, a class, a method
or a line) being faulty. Moreover, the GZOLTAR toolset
resorted to Open Graphics Library (OpenGL) to render the
diagnostic report’s visualizations. In particular, it offered the
user to render the diagnostic reports using either Sunburst or
Treemap. The Sunburst was re-implemented and the Treemap
was abandoned. However, our OpenGL implementation was
not optimal, with several shortcomings. When more complex
visualizations were rendered, the scene became heavy in terms
of computational resources used, entailing a negative impact in
the user interaction. Besides, there are a few incompatibilities
with some Graphical Processing Unit (GPU)’s and graphic
cards drivers originating a defective rendered scene.

To address these issues, the OpenGL-based visualizations
were replaced with visualizations in Hypertext Markup Lan-
guage, version 5 (HTML5): (1) to reduce the computational
resources needed, (2) to improve the interaction with the user
with new options, and (3) to even offer more visualizations.
In particular, we considered the D3.js [6] JavaScript library to
display digital data in dynamic graphical forms.

The HTML5 visualizations provided by GZOLTAR, a novel
concept in the context of fault localization, aid developers to
pinpoint the most suspicious system components. Furthermore,
users are able to interact with the visualizations in order to
isolate the faulty component. The IDE’s editor also displays
warnings next to the lines that are considered faulty by the
fault localization technique for the developer to quickly spot
suspicious parts. The toolset creates an ideal and integrated
ecosystem to manage tasks related to testing and debugging
tasks (from the execution of JUnit tests to the source code
analysis) in order to help identifying and fixing the faults
responsible for observed failures.

We performed a user study with GZOLTAR and confirmed
that the features provided by the toolset are of great benefit
when testing and debugging a software program. Building on
top of Parnin and Orso’s work [7], who concluded that only
inspecting the rankings yielded by current fault localization

techniques may not always be sufficient, we agreed that the
visualization of the diagnostic report adds extra information
leading the developer to the fault quickly.

To sum up, the main contributions of this paper are:
• We propose a set of visualizations using HTML5 to

display information-rich diagnostic reports. In particular,
we implemented and studied the added value of the
following visualizations: Sunburst, Vertical Partition, and
Bubble Hierarchy;

• We incorporate the visualizations in a toolset coined
GZOLTAR, which is publicly available;

• We carried out an user study, showing the benefits
the visualizations bring to the debugging phase. Of the
participants which did not use visualizations to aid the
fault localization, only 35% found the fault, and even
those had higher fault localization times than those using
GZOLTAR. The group that used the visualizations took
on average 9 minutes and 17 seconds less than the group
that did not use them.

The reminder of this paper is organized as follows. Sec-
tion II presents the technique of fault localization used in
the GZOLTAR toolset. Section III describes the visualizations
available in GZOLTAR and Section IV presents the function-
alities of the toolset. Section V reports the findings of the user
study carried out to validate the efficiency and effectiveness of
the use of visualizations to support software fault localization
and the usability of the GZOLTAR toolset, presenting the
results obtained and discussing the feedback given by the
users. Section VI discusses related work. Finally, Section VII
concludes this paper.

II. FAULT LOCALIZATION

(Semi-)automatic fault localization has been an active area
of research in recent years [8], [9], [10], [11], [12], [13].
This paper considers SFL as underlying, fault localization
technique, which is amongst the best fault localization tech-
niques [4]. Throughout this paper, we use the following
terminology [14]:

• A failure is an event that occurs when delivered service
deviates from correct service.

• An error is a system state that may cause a failure.
• A fault (defect/bug) is the cause of an error in the system.
In this paper, we apply this terminology to software pro-

grams, where faults are bugs in the program code. Failures
and errors are symptoms caused by faults in the program. The
purpose of fault localization is to pinpoint the root cause of
observed symptoms.

Definition 1 A software program Π is formed by a sequence
M of one or more statements.

Given its dynamic nature, central to the fault localization
technique considered in this paper is the existence of a test
suite.

N spectra

M components
a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

. . .
...

aN1 aN2 · · · aNM

error
detection

e1
e2
...
eN

Figure 1: Input for SFL technique: aij represents the coverage
for component j in run i. Error detection ei is true if test fails
or false otherwise.

Definition 2 A test suite T = {t1, . . . , tN} is a collection of
test cases that are intended to test whether the program follows
the specified set of requirements. The cardinality of T is the
number of test cases in the set |T | = N .

Definition 3 A test case t is a (i, o) tuple, where i is a collec-
tion of input settings or variables for determining whether a
software system works as expected or not, and o is the expected
output. If Π(i) = o the test case passes, otherwise fails.

A. Program Spectra

A program spectrum is a characterization of a program’s
execution on a dataset [15]. This collection of data, gathered
at runtime, provides a view on the dynamic behaviour of a pro-
gram. The data consists of counters or flags for each software
component. Various different program spectra exist [16], such
as path-hit spectra, statement-hit-spectra, data-dependence-hit
spectra, and block-hit spectra. In the context of this paper we
consider statement-hit-spectra.

In order to obtain information about which components
were covered in each execution, the program’s source
code needs to be instrumented, similarly to code coverage
tools [17]. This instrumentation will monitor each component
and register those that were executed (see Figure 1). Compo-
nents can be of several detail granularities, such as classes,
methods, or statements.

B. Fault Localization

Spectrum-based Fault Localization (SFL) exploits informa-
tion from passed and failed system runs. A passed run is a
program execution that is completed correctly, and a failed run
is an execution where an error was detected [4]. The criteria
for determining if a run has passed or failed can be from
a variety of different sources, namely test case results and
program assertions, among others. The information gathered
from these runs is their hit spectra [4].

The hit spectra of N runs constitutes a binary N×M matrix
A, where M corresponds to the instrumented components of
the program. Information of passed and failed runs is gathered
in a N -length vector e, called the error vector. The pair (A, e)
serves as input for the SFL technique, as seen in Figure 1.

With this input, fault localization consists in identifying
what columns of the matrix A resemble the vector e the
most. For that, several different similarity coefficients can be

public Complex reciprocal() Tests
{ 1 2 3 4 5 6 sO

1: if (isNaN) 0.408
2: return NaN; 0.000
3: if (real == 0.0 && imaginary == 0.0) 0.447
4: return NaN; /* FAULT */ 1.000
5: if (isInfinite) 0.000
6: return ZERO; 0.000
7: if (FastMath.abs(real) < FastMath.abs(imaginary)) { 0.000
8: double q = real / imaginary; 0.000
9: double scale = 1.0 / (real * q + imaginary); 0.000
10: return createComplex(scale * q, -scale); 0.000
11: } else { 0.000
12: double q = imaginary / real; 0.000
13: double scale = 1.0 / (imaginary * q + real); 0.000
14: return createComplex(scale, -scale * q);} 0.000

Error vector: X X X X X 7

Figure 2: Coverage of reciprocal function from Apache Commons Math project with Ochiai coefficient.

used [18]. One of the most effective is the Ochiai coeffi-
cient [19], used in the molecular biology domain:

sO(j) =
n11(j)√

(n11(j) + n01(j))× (n11(j) + n10(j))
(1)

in this case, npq(j) is the number of runs in which the
component j has been touched during execution (p = 1)
or not touched during execution (p = 0), and where the
runs failed (q = 1) or passed (q = 0). For instance, n11(j)
counts the number of times component j has been involved in
failed executions, whereas n10(j) counts the number of times
component j has been involved in passed executions. Formally,
npq(j) is defined as

npq(j) = |{i | aij = p ∧ ei = q}|. (2)

SFL can be used with program spectra of several different
granularities. However, it is most commonly used at the
statement or basic block level, as coarser granularities may
make it difficult for programmers to investigate if a given fault
hypothesis generated by SFL was, in fact, faulty. Throughout
this work, we use statement level as the component granularity
for the fault localization diagnosis report.

C. Example

Figure 2 presents an example of the SFL technique, using
the Ochiai coefficient for the reciprocal function from
the Apache Commons Math2 project. This function returns
the multiplicative inverse of this element. To improve legi-
bility, the coverage matrix and the error detection vector are
transposed. The detail granularity for each component of the
hit spectra in this particular example is the line of code. The
program contains a fault in line 4: it should read return
INF;.

Six test cases were executed, and their coverage information
for each line of code are on the right-hand-side of Figure 2.

2Apache Commons Math project homepage http://commons.apache.org/
proper/commons-math/, 2013.

Table I: Faulty statement ranking.

Ranking sO Statement

1 1.000 4: return NaN; /* FAULT */

2 0.447 3: if (real == 0.0 && imaginary == 0.0)

3 0.408 1: if (isNaN)

4 0.000 2: return NaN;

5 0.000 5: if (isInfinite)

6 0.000 6: return ZERO;

7 0.000 7: if (FastMath.abs(real) < FastMath.abs(imaginary)) {

8 0.000 8: double q = real / imaginary;

9 0.000 9: double scale = 1.0 / (real * q + imaginary);

10 0.000 10: return createComplex(scale * q, -scale);

11 0.000 11: } else {

12 0.000 12: double q = imaginary / real;

13 0.000 13: double scale = 1.0 / (imaginary * q + real);

14 0.000 14: return createComplex(scale, -scale * q);}

At the bottom there is also the test case pass/fail info for each
execution - which corresponds to the error detection vector
e. According to this pass/fail status, the test number 6 fails,
and all the other ones pass. Then, the similarity coefficient
was calculated for each line using the Ochiai coefficient
(Equation 1). These results represent the suspiciousness of a
certain line containing a fault. The higher the coefficient, the
more likely it is that a line contains a fault. Therefore, these
similarity coefficients can be ranked to form an ordered list of
the probable faulty lines. This ranking can be seen in Table I.
Note that lines whose coefficient is zero can be stripped out of
the ranking. This is because they are not executed when a test
fails, so they cannot be the cause of the abnormal behaviour.

For the example, the first element in the ranking (which
has also the highest coefficient) is statement number 4 - the
faulty statement. As such, the developer only has to inspect this
position in the ranking to find the faulty statement. Although
contrived, this example serves well to demonstrate how SFL
works.

A shortcoming of presenting the information in such format
is that users do not traverse the ranking line by line and/or fully
understand the meaning of the coefficients [7]. Also, important

information is not given to the user with the ranking (e.g.,
topology of the program). Our previous attempt to present a
visual representation of the ranking was using OpenGL [2],
and entailed the following drawbacks: (1) resource intensive,
(2) difficult to enhance with new visualization features, and
(3) not straightforward to create new visualizations.

III. DIAGNOSTIC REPORT’S VISUALIZATIONS

To make the ranking yielded by the underlying fault local-
ization technique (as in Table I) more understandable by the
developer as well as enhance it with extra - and important
- information, we propose diagnostic report’s visualizations.
The visualizations have the capability to display the report
in an information rich setting, and display the structure of
the program as an hierarchical structured tree. This helps
developers to understand the data organization and to access
the position of a component in the program. The values of the
similarity coefficients for each component are used to create
a smooth colour gradient for the component, varying from
red to green: red means that component is likely responsible
for the observed faults; green means that component is not
responsible; and yellow is the mid value between red and
green. The colour of a non-leaf element is determined by the
maximum suspiciousness of all of its children.

The proposed visualizations can be divided into: (1) ad-
jacency diagram and (2) enclosure diagram. Sunburst (see
Figure 3a) and Vertical Partition (see Figure 3b) are adjacency
diagrams, Bubble Hierarchy (see Figure 3c) is an enclosure
diagram. All visualizations are space-filling variants of node-
link diagrams, because the link between father and children
disappear and are drawn only the nodes as solid spaces.
In these cases, each node is drawn taking into account the
size of its children, in other words, the size of the node is
proportional to the size of the sub-tree that is derived from
it. This way to represent the hierarchic tree has the advantage
of passing a better idea of the relative dimensions of each
component, because this information could be difficult to
represent on a node-link diagram. Another advantage that this
kind of adjacency and enclosure diagrams have over node-link
diagrams is that node-link diagrams could waste much space
to represent a big amount of hierarchical data.

A. Sunburst

The Sunburst (see Figure 3a) visualization uses arcs as
solid areas which represent the nodes. The radius of each
one proportionally varies with the size of the respective sub-
tree. The root element is drawn always at the centre of the
visualization, and the children are expanded outward from it.
This visualization uses polar coordinates to properly position
each arc. It is a popular visualization frequently used, for
instance, to display information of hard disk drives.

B. Vertical Partition

Vertical Partition (see Figure 3b) visualization uses rectan-
gles instead of arcs to represent each node, and the children
of each parent are drawn directly below it. As in Sunburst, the

size of each solid node proportionally varies with the size of
the respective sub-tree. The root is always drawn at the top of
the visualization, and all children are drawn below from there.

C. Bubble Hierarchy

Unlike Sunburst and Vertical Partition, Bubble Hierarchy
(see Figure 3c) applies the concept of containment instead of
adjacency and uses circles to represent each solid node. Each
child is drawn inside the area which represents the father,
in other words, the area is recursively divided in subareas
and so on. To better manage the visualization area, if any
component has only one child, the father is not drawn, being
drawn only the child. It is a different idea from the other two
visualizations, but the final purpose of the hierarchic structure
representation is the same.

IV. TOOLSET

GZOLTAR [2] is an Eclipse plugin [3] for automatic testing
and debugging. Currently, the framework is provided as a
plugin and library, and integrates seamlessly with the JUnit
framework. It is an evolution from Zoltar [8] and is imple-
mented using Java language and analyses programs written in
Java. To install the GZOLTAR toolset, users need to request a
license at

http://www.gzoltar.com/

Once the license is received, installing the software is straight-
forward: users only need to access to “Install New Software”
sub-menu item (under the “Help” menu) and use the URL
provided.

As said before, currently GZOLTAR offers three distinct
visualizations implemented in HTML5: Sunburst (see Fig-
ure 3a), Vertical Partition (see Figure 3b) and Bubble Hierar-
chy (see Figure 3c). To select the desired visualization, the user
can click at one of the three corresponding buttons at top right
corner of the diagnostic report view. The order of the buttons
is Sunburst, Vertical Partition and Bubble Hierarchy, from left
to right. Note that this toolset uses a visualization framework,
D3.js [6], which allows the creation of new visualizations with
little effort. D3.js is a JavaScript (JS) library which allows the
creation of different visual representations of data.

The generated visualizations are interactive, and the user is
able to navigate through the project structure to analyse it in
detail. The intention of the visualizations have the main goal
of representing the analysed project in an hierarchical way
(see Figure 5 for a graphical explanation) to allow a faster
and easier debugging process. For instance, in the Sunburst
visualization, each ring denotes an hierarchical level of the
source code organization (from the inner to the outer circle).

All visualizations obey to a colour gradient ranging from
green (low suspiciousness) to red (very high suspiciousness).
The suspiciousness is computed by the diagnostic algorithm
detailed in Section II-B. If all the tests passed (i.e., there were
no observed failures), the underlying fault localization tech-
nique yields an empty diagnostic report. As such, GZOLTAR
will render a visualization with all the system components in

(a) Sunburst (b) Vertical Partition (c) Bubble Hierarchy

Figure 3: GZOLTAR visualizations representing the structure of the Apache Commons Math project.

(a) Low
Suspiciousness

(b) Medium
Suspiciousness

(c) High
Suspiciousness

(d) Very High
Suspiciousness

Figure 4: GZOLTAR global view representing the integration of toolset with the Eclipse IDE and warning description.

green. It should be noted that this does not mean that the
system under test is bug-free, but rather that no failure was
observed.

Users are able to navigate and interact with the visual-
izations. They may analyse each component by hovering the
mouse cursor at any element on any visualization and a tooltip
is shown with the identification of it and the corresponding
suspiciousness value (see Figure 4). The user may click
(left-click) on any component representation, and the
code editor is automatically opened with the respective source
code, as depicted in Figure 4. Users may also zoom in/out
(with the mouse wheel) the visualization to analyse in detail

a specific part of the system, and pan the visualization (see
Figure 6 for more detail). The user may also resize the
diagnostic report view at any time to automatically enlarge
or reduce the visualization used.

Users are able to select any inner component to be the new
root of the visualization, and only the sub-tree related to that
component is displayed. This step was called “Root Change”,
and can be seen as a “smart zoom”, because the viewing
area gets limited to increase visualization detail, maintaining
the same visual structure concept. To activate this feature
the user hovers the mouse cursor at any element on any
visualization, and double click with left-click. Thus all

Figure 5: GZOLTAR hierarchical representation.

(a) Initial (b) Zoomed In

Figure 6: Zoom Feature.

the elements that are not related directly with the descendants
or ascendants of the selected element will be hidden from the
visualization (see Figure 7). This feature is available in all
visualizations. Right-click reverts to the initial state, or
double left-click on any higher hierarchical component
to centre the zoom on it.

The GZOLTAR toolset also places warnings on the vertical
ruler of the code editor next to the lines that are most likely
to contain the fault. This list of warnings aid the developer in
the process of pinpointing the faulty statement. The warnings
can be of four types (see Figure 4): (1) red (Figure 4d)
for the top lines most likely to contain a fault, (2) orange
(Figure 4c) for high suspiciousness, (3) yellow (Figure 4b)
for medium suspiciousness, and (4) green (Figure 4a) for low
suspiciousness. Each warning embeds a ColorADD symbol3,
aimed at aiding colour-blind people distinguish between the

3ColorADD colour identification system, http://coloradd.net, 2013.

(a) Initial (b) Root Change

Figure 7: Root Change Feature.

different warnings. Figure 4 depicts the integration with the
code editor and the generated warnings.

V. USER STUDY

We carried out an user study to validate the usefulness of the
visualizations proposed in this paper. In particular, we thought
to answer to these two research questions:

RQ1: Do the proposed visualizations efficiently aid the user
to quickly find a fault?

RQ2: Is GZOLTAR a usable toolset?

This section also details the user study and draws conclusions
from the results obtained from the user feedback.

A. Users and Setup
The user study was performed by 40 students (39 male and 1

female) on an iMac with OS X Mountain Lion version 10.8.3.
All participants are students of the Master in Informatics
and Computing Engineering in Faculty of Engineering of
University of Porto.

All participants were familiar the Eclipse IDE and were
divided into two groups according to the answers given
in a questionnaire to assess their experience (in particular,
regarding JUnit and Java). The users with JUnit experience
were asked to perform the task without GZOLTAR (control
group), whereas the others were asked to use GZoltar (test
group). The size of each group (20 users) was based on the
work by J. Nielsen’s on usability and user tests [20], [21].

Before performing the debugging task, participants an-
swered a questionnaire to guide the creation of the two groups.
The users had no previous contact with the GZOLTAR toolset.
Some of the users were not even familiar with the Eclipse
IDE (the only IDE supported by GZOLTAR at the moment).
Before starting the testing and debugging task, the toolset
was not introduced in detail in order to let us to figure out
how intuitive it is. Essentially, the main features were quickly
introduced. The test group, also answered a questionnaire
about GZOLTAR’s usability.

To evaluate the efficiency of the visualizations, we used the
XStream4 project, a software to (de)serialize objects into eX-
tensible Markup Language (XML). None of the users were

4XStream homepage http://xstream.codehaus.org/, 2013.

familiar with the XStream’s source code before the user study.
XStream version 1.4.4 has 17389 Line Of Code (LOC), 306
classes and 22 packages. The program also provides 1418 unit
test cases. We inject a logic operator fault in the program:
a not equal to operator (“!=”) was changed to an equal to
operator (“==”) in line 455 of the AnnotationMapper
class from the com.thoughtworks.xstream.mapper
package. This fault still allows the code to be compiled
(a requirement to use GZOLTAR), and leads to unexpected
behaviour during execution. Participants were provided with
all test cases, and a timeout of 30 minutes was set to find and
fix the fault.

B. The efficiency of visualizations

RQ1: Do the proposed visualizations efficiently aid the
user to quickly find a fault?

From the test group, 100% of the participants found the fault
and even fixed it. From the control group, only 35% found and
fixed the fault, the other 65% did not even find the fault. For
those who did not find the fault in 30 minutes (the timeout
set by us), were assigned as taking the maximum time (the
graphs and calculations presented later take this into account).

The control group found the fault in 23 minutes and 22
seconds (on average), with a median time of 30 minutes and a
standard deviation of 9 minutes and 49 seconds. The test group
found the fault in 7 minutes and 53 seconds (on average), with
a median time of 7 minutes and 3 seconds and a standard
deviation of 4 minutes and 52 seconds. From these results, we
saw that those that used the visualizations were significantly
faster in finding the injected fault (see Figure 8 and 9 for
detailed information about the distribution of the groups).

From Figure 8, based on a kernel density estimation
(KDE) [22], we see that the control group was more concen-
trated in the timeout value (30 minutes) and follows a bimodal
distribution. We also identify two distinct subgroups, one with
lower density and time values and another with higher density
and time values. The test group was more concentrated in the
lower time values and follows an unimodal distribution.

In Figure 9, we see that the median has significantly
different values. Control group has a median value higher
than test group. The highest concentration of participants is
also different, with significant lower values at those used the
visualizations.

To increase our certainty that the use of visualizations is of
added value, we performed the statistical hypothesis t-test [23].
T-test is a statistical hypothesis test in which the test statistic
follows a Student’s t distribution if the null hypothesis is
supported. Even thought the groups do not follow a Student’s t
distribution, the t-test is applicable, only without the precision
of a perfect normal distribution. The null hypothesis of the
t-test is used to determine if two groups are significantly
different from each other. In our case the null hypothesis (H0)
tests if the mean time (µ1) of the control group is less than

Figure 8: Times distribution.

Figure 9: Time to find a fault.

or equal to the mean time (µ2) of the test group. Formally,
H0 : µ2 ≥ µ1.
Using t-test we can refute the null hypothesis: the t value
calculated (t ≈ 6.163) is greater than the critical-t = 2.467
(from Student’s t table with 99% of confidence and 28 degrees
of freedom). This means that the mean time spent by the
control group to find the fault is greater than the mean time
spent by the test group (µ2 < µ1). By refuting (H0), we
concluded that the visualizations help the debugging task.

To check how much faster was the test group against the
control group, an alternative hypothesis H1 : µ2 + ∆x < µ1

was proposed, where the ∆x is the value of the average
difference between performing the debugging task with and
without using visualizations. We concluded that the test group
took on average ∆x = 9 minutes and 17 seconds less than the
control group to find the fault injected.

0,00 1,00 2,00 3,00 4,00 5,00

Font's size/shape

Intuitive icons/buttons

Information clearly organized

Tasks quickly/easily executed

Usefulness of warnings

GZoltar response speed

No user experience needed

IDE integration relevance

Importance of visual debugging

GZoltar global experience

Figure 10: Average classification per topic of the GZOLTAR
user’s feedback.

To have a better understanding about the meaning of these
values on finding real faults we scaled the timeout to: (1) 4
hours (half day’s work), (2) 8 hours (day’s work), (3) one week
and (4) one month, and calculated again the value of ∆x. The
results were: (1) ∆x ≈ 1 hour and 30 minutes, (2) ∆x ≈ 3
hours, (3) ∆x ≈ 2 days and 16 hours and (4) ∆x ≈ 11 days
and 10 hours. With this we concluded that using visualizations
to support software fault localization, developers are able to
find a fault significantly faster than with common debugging
tools.

C. The usability of GZOLTAR

RQ2: Is GZOLTAR a usable toolset?

After the debugging experiment, the test group was invited
to answer a final set of questions. Most questions had the inten-
tion to ask for feedback about the user experience with respect
to the GZOLTAR toolset. The questionnaire was comprised of
13 closed questions related to usability and intuitiveness of
the GZOLTAR toolset. The answers were given with a Likert
scale from 1 to 5, which 1 is nothing favourable and 5 very
favourable (see Figure 10 to see the classification of each
topic covered in the questionnaire). From their answers, we
concluded that the vast majority of users found GZOLTAR an
intuitive and helpful toolset.

Regarding usability, questions about font’s size, information
organization and highlights (colours, icons and buttons) were
asked.

The average feedback about the highlights, and task execu-
tion intuitiveness and overall toolset performance was positive.
The same happened when users were questioned about the
experience and previous knowledge needed to use this toolset.
And this corresponds exactly to the results of the user study,
where 100% of the users were able to find and fix an unknown
fault in less than 30 minutes, in a 17389 LOC software where
they had no previous contact. This indicates that the toolset is
shown to be effective.

An expressive number of users considered the toolset
straightforward to start using and with a not too steep learning

curve. Considering that the users had no real previous contact
with the tool and that no advanced training in any form was
given, we believe that these results are rather positive.

The users were also questioned about some concepts related
to this toolset, such as the automatic debugging, integration
of debugging into an IDE, visual debugging and about their
global experience. The concept that had better receptiveness
was visual debugging. These results also denote that the users
approve visual automatic debugging tools integrated into an
IDE.

In general, the GZOLTAR had a great acceptance among
the users. The concepts underlying this toolset were also well
accepted. These user reviews, added to the results of the study,
reveal that the GZOLTAR toolset is efficient and effective.

Users were also invited to give their opinions and sugges-
tions for further improvements. Sunburst was considered to be
the most intuitive because, in the opinion of the participants,
it represents the software hierarchy in an intuitive way. The
collected feedback was overall positive, in which the users
stated they found the toolset very effective and easy to use.

The suggestions to improve this toolset in future versions,
were about simplifying the Bubble Hierarchy visualization to
scale in a better way for big projects when we are using a
small view.

With this experiment we were able to confirm the usefulness
of this tool. The scenario of this experiment was rather
demanding, because the users had no previous contact with the
toolset or with XStream source code. Nevertheless, the results
were very promising, and the users shown to be pleased with
the use of this toolset.

Note that we have not explicitly asked which features of
the toolset they used and/or found useful while searching
the faulty statement because we have monitored the fault
localization process. Since such monitoring allowed us to
verify the procedures/steps taken by the users, we concluded
that the tool was heavily relied upon. In fact, a user has told
us that “without the toolset, it would be practically impossible
to locate the fault”.

Finally, we computed the correlation coefficient to verify
if there is any connection between these topics. We found a
strong correlation between:

• intuitive icons/buttons and information clearly organized,
• intuitive icons/buttons and usefulness of warnings,
• intuitive icons/buttons and tasks quickly/easily executed,
• information clearly organized and IDE integration rele-

vance, and
• no user experience needed and GZOLTAR global experi-

ence.
The intuitive icons and buttons are responsible for the clarity

of the information and for allowing quick and easy tasks. The
users did not feel the need to have previous experience with
the tool, they were able to perform the tasks without an in-
depth knowledge of it. We concluded that the editor warnings
are useful and intuitive for the users. So, the intuitive and clear
interface is one of the most important aspects responsible for
easy adoption by users.

VI. RELATED WORK

In the software research and industry communities, and
as software complexity grows over time, the relationship
between visualizations and software projects is becoming
more and more important [24]. This is also a fact in the
testing and debugging phases of the software development
life-cycle. Resulting from the interconnection between the
software debugging process and visualizations, there are some
interesting tools to explore further.

Data Display Debugger (DDD) [25] is a debugging tool
which helps the user to find software failures. DDD analyses
each software execution and provides a step-by-step visual
trace of the execution instead of a global analysis of the entire
system.

Tarantula [9] is a visual debugging tool for programs written
in the C language and uses SFL. Each LOC is highlighted
accordingly the probability calculated when Tarantula runs the
test suits against the System Under Test (SUT). This highlight
is made using a colour gradient from green to red. The green
means the minimum suspiciousness and the red means the
maximum suspiciousness. The analysis made by Tarantula
considers the system as a whole, and this is a good feature
when applied to big projects.

KDbg [26] is basically a front-end graphical user interface
to GNU debugger (gdb). KDbg itself is not the debugger,
it communicates with the gdb by sending commands to it
and receiving the output. The main objective is to provide an
intuitive interface for setting breakpoints, inspecting variables,
and stepping through code.

EzUnit [13] is one more visual debugging tool which uses
statistical debugging. More specifically is a plugin for the
Eclipse IDE and works with projects written in Java language
and which use JUnit test cases. EzUnit displays a list of the
code blocks of the project analysed ranked by their failure
probability. In this display, each line of the list is highlighted
accordingly a colour gradient from green to red, where green is
the minimum probability of failure and the red the maximum
probability of failure. Beyond this, EzUnit has a call-graph
related to all methods the test method potentially calls. Each
node of the graph corresponds to a code block, and obeys to
the same colour gradient.

VIDA [10] is a tool implemented as an Eclipse IDE plugin.
It supports programs written in Java language and JUnit test
cases. At first VIDA collects the statement coverage informa-
tion of test cases and select a failed test that has executed some
statements, because this test has some suspicious statements
to be examined. This selected test is the starting point of the
debugging process. After that, the objective is to locate the
faulty statement that caused the failure of that test. VIDA takes
into account the statements with large suspicious and helps
visually the user to set a breakpoint, giving some candidates.
After the setting of the breakpoint, VIDA collects the user’s
estimation on that breakpoint and modifies the statements’
suspicious based on the user’s estimation.

Enhancing Fault Localization via Multivariate Visualization
approach [11] uses scatter plots to represent the similarity

between test cases. The main goal is facilitate the identification
of similar tests. The similar test are represented close to
each other and the dissimilar tests are represented away from
each other. Before the scatter is built, it is necessary to
calculate some auxiliary matrices. In the initial matrix, each
line is a test case and each column is an element of the
program inspected. The second matrix is calculated applying
a dissimilarity metric that calculates the level of similarity
between the test cases. Finally is calculated the third matrix
from the previous using a multidimensional scaling [27] to be
possible a 2D representation of the test cases as scatter points.
The user is helped to find the coincidentally correct tests by
following some scatter plots. These coincidentally correct tests
are moved to the set of failure tests or discarded to enhance the
effectiveness of Coverage-based Fault Localization (CBFL)
(another term to refer to SFL) [12].

Java Interactive Visualization Environment (JIVE) [28] is
based upon an Eclipse IDE plugin architecture and the Java
Platform Debugging Architecture (JPDA) is its key compo-
nent. The aim of this tool is to provide a more compre-
hensive declarative and visual execution environment. JIVE
uses JPDA’s Java Debug Interface (JDI) to request notification
of certain runtime events. The information collected from the
call stack together with the JDI event forms a JIVE event. JIVE
constructs two main models, an object model and a sequence
model. The object model represents the program’s execution
state and the sequence model details its history of execution.
The objective is to facilitate the program comprehension and
debugging. This tool has three main aspects: (1) scalable
visualizations - it supports on the object diagrams suppress-
ing of the internal details of objects and their interactions,
suppressing superclass details, hiding field tables, showing
only objects involved in the class path, etc. On sequence
diagrams, the objective is to reduce them. Sub-computations
corresponding to large call threes are replaced by a single
node; (2) declarative queries - here the aim is select only
those parts of the object and sequence diagrams that are really
important to a query of interest to the programmer. So, the
sequence diagram is an good way to visually reporting the
answers to queries, helping the identification of where answers
lie; and (3) interactive execution - JIVE does incremental
state-saving during forward execution and incremental state-
restoring during reverse execution.

We are distinct because the GZOLTAR toolset offers a great
level of interaction for the user. Our interactive graphical visu-
alizations obey to an hierarchical structure and use an intuitive
colour gradient to represent the suspiciousness value of each
component. The fact that GZOLTAR is directly embedded on
Eclipse IDE, provides a faster an easier inspection of the code,
improving the debugging process.

VII. CONCLUSIONS AND FUTURE WORK

Automatic fault localization has been an active area of
research in recent years. Researchers have, however, focused
more on how to improve the diagnostic quality, and far
less on how to show the information to the end users (i.e.,

developers). The latter may have a tremendous impact in fault
localization [7]. In the past, we have exploited OpenGL as
basis to build interactive visualizations, but these techniques
entail technological drawbacks: the complex scenes rendered
could be very heavy in terms of computational resources used,
entailing a negative impact in the user interaction with the
tool; there are incompatibilities with some GPU’s and graphics
cards drivers originating a defective rendered scene.

In this paper, we proposed visualizations using HTML5 to
display the diagnostic reports yielded by automatic fault lo-
calization techniques. In particular, we consider as underlying
technique the Ochiai spectrum-based fault localization [19],
known to be amongst the best performing techniques [4].
We offered the proposed visualizations within the GZOLTAR
toolset, an Eclipse plugin for testing and debugging. The visu-
alizations explored by us are the Sunburst, Vertical Partition,
and Bubble Hierarchy.

To ascertain the usefulness of visualizations, we carried out
an user study. Results confirmed that without using visual-
izations to aid the fault localization is too much difficult to
find a fault, only 35% found it, and even when the fault was
found, users spent significantly more time to do it. The group
that used the visualizations took on average 9 minutes and
17 seconds less than the group that did not use them. The
intuitive and clear interface of the visualizations is one of the
most responsible for this times difference.

Future work includes the following. We plan to perform
an user study with more participants, ideally from industry.
Second, we plan to offer the plugin to more IDEs (such
as IntelliJ IDEA). Finally, other visualizations will also be
explored.

ACKNOWLEDGMENTS

This work is financed by the ERDF – European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT – Fundação para a Ciência e Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-020484. We would like to
thank Nuno Cardoso, for the useful feedback on previous
versions of this paper.

REFERENCES

[1] B. Hailpern and P. Santhanam, “Software debugging, testing, and
verification,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12, Jan. 2002.

[2] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: An Eclipse
Plug-in for Testing and Debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE 2012. New York, NY, USA: ACM, 2012, pp. 378–381.

[3] E. Burnette, Eclipse IDE Pocket Guide. O’Reilly Media, Inc., 2005.
[4] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A

practical evaluation of spectrum-based fault localization,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1780–1792, Nov. 2009.

[5] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “An Evaluation of
Similarity Coefficients for Software Fault Localization,” in Proceedings
of the 12th Pacific Rim International Symposium on Dependable Com-
puting, ser. PRDC ’06. Riverside, California, USA: IEEE, 2006.

[6] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-Driven Documents,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2301–2309, Dec. 2011.

[7] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ser. ISSTA ’11. New York,
NY, USA: ACM, 2011, pp. 199–209.

[8] T. Janssen, R. Abreu, and A. J. C. v. Gemund, “Zoltar: A Toolset for
Automatic Fault Localization,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’09. Washington, DC, USA: IEEE Computer Society, 2009.

[9] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02. New
York, NY, USA: ACM, 2002, pp. 467–477.

[10] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei, “VIDA: Visual inter-
active debugging,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 583–586.

[11] W. Masri, R. A. Assi, F. Zaraket, and N. Fatairi, “Enhancing fault
localization via multivariate visualization,” in Proceedings of the 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation, ser. ICST ’12. USA: IEEE, 2012, pp. 737–741.

[12] W. Masri and R. A. Assi, “Cleansing Test Suites from Coincidental
Correctness to Enhance Fault-Localization,” in Proceedings of the Third
International Conference on Software Testing, Verification and Valida-
tion, ser. ICST ’10. IEEE Computer Society, 2010, pp. 165–174.

[13] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann, “Ezunit: a framework
for associating failed unit tests with potential programming errors,” in
Proceedings of the 8th international conference on Agile processes in
software engineering and extreme programming, ser. XP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 101–104.

[14] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[15] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling for
software maintenance with applications to the year 2000 problem,” in
Proc. of the 6th European Software Engineering conference co-located
with the 5th ACM SIGSOFT international conference ESEC/FSE, ser.
ESEC ’97/FSE-5. Springer-Verlag New York, 1997, pp. 432–449.

[16] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An Empirical
Investigation of the Relationship Between Fault-Revealing Test Behavior
and Differences in Program Spectra,” STVR Journal of Software Testing,
Verification, and Reliability, no. 3, pp. 171–194, September 2000.

[17] Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage based testing
tools,” in Proceedings of the 2006 international workshop on Automation
of software test, ser. AST ’06. New York, NY, USA: ACM, 2006.

[18] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[19] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques -
MUTATION, ser. TAICPART-MUTATION ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 89–98.

[20] J. Nielsen and T. K. Landauer, “A mathematical model of the finding
of usability problems,” in Proceedings of the INTERACT ’93 and CHI
’93 conference on Human factors in computing systems, ser. CHI ’93.
New York, NY, USA: ACM, 1993, pp. 206–213.

[21] J. Nielsen. (2012) How many test users in a usability study. http://www.
nngroup.com/articles/how-many-test-users/.

[22] E. Parzen, “On Estimation of a Probability Density Function and Mode,”
The Annals of Mathematical Statistics, vol. 33, no. 3, 1962.

[23] M. Hazewinkel, Encyclopaedia of Mathematics, ser. Encyclopaedia of
Mathematics. Springer, 1994.

[24] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2007.

[25] A. Zeller and D. Lütkehaus, “DDD - A Free Graphical Front-End for
UNIX Debuggers,” ACM SIGPLAN Notices, vol. 31, no. 1, 1996.

[26] J. Sixt. (2011) KDbg - A Graphical Debugger Interface. http://www.
kdbg.org/.

[27] I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and
Applications, ser. Springer Series in Statistics. Springer, 2005.

[28] J. K. Czyz and B. Jayaraman, “Declarative and visual debugging in
eclipse,” in Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange, ser. eclipse ’07. New York, NY, USA: ACM,
2007, pp. 31–35.

