
A Dynamic Code Coverage Approach to Maximize
Fault Localization Efficiency

Alexandre Pereza, Rui Abreua, André Riboiraa

aDepartment of Informatics Engineering
Faculty of Engineering, University of Porto

Porto, Portugal

Abstract

Spectrum-based fault localization is amongst the most effective techniques for
automatic fault localization. However, abstractions of program execution traces,
one of the required inputs for this technique, require instrumentation of the
software under test at a statement level of granularity in order to compute a list
of potential faulty statements. This introduces a considerable overhead in the
fault localization process, which can even become prohibitive in, e.g., resource
constrained environments. To counter this problem, we propose a new approach,
coined Dynamic Code Coverage (DCC), aimed at reducing this instrumentation
overhead. This technique, by means of using coarser instrumentation, starts
by analyzing coverage traces for large components of the system under test. It
then progressively increases the instrumentation detail for faulty components,
until the statement level of detail is reached. To assess the validity of our
proposed approach, an empirical evaluation was performed, injecting faults in
six real-world software projects. The empirical evaluation demonstrates that
the dynamic code coverage approach reduces the execution overhead that exists
in spectrum-based fault localization, and even presents a more concise potential
fault ranking to the user. We have observed execution time reductions of 27%
on average and diagnostic report size reductions of 77% on average.

Keywords: dynamic coverage, software diagnosis, spectrum-based fault
localization

1. Introduction

Automatic fault localization techniques aid developers/testers to pinpoint
the root cause of failures, thereby reducing the debugging effort. Amongst the
most diagnostic effective techniques is spectrum-based fault localization (SFL).
SFL is a statistical technique that uses abstraction of program traces (also

Email addresses: alexandre.perez@fe.up.pt (Alexandre Perez), rui@computer.org
(Rui Abreu), andre.riboira@fe.up.pt (André Riboira)

Preprint submitted to Elsevier December 5, 2013

known as program spectra) to correlate software component (e.g., statements,
methods, classes) activity with program failures (Abreu et al., 2009c; Liu et al.,
2006; Wong et al., 2008). As SFL is typically used to aid developers in identifying
the root cause of observed failures, it is used with low-level of granularity (i.e.,
statement level).

Statistical approaches are very attractive due to the relatively small over-
head with respect to CPU time and memory requirement (Abreu et al., 2009c,b).
However, gathering the input information, per test case, to compute the diag-
nostic ranking may still impose a considerable (CPU time) overhead. This is
particularly the case for resource constrained environments. The effort required
to inspect SFL’s diagnostic report is also noteworthy.

As said before, typically, SFL is used at development-time at a statement
level granularity (since debugging requires to locate the faulty statement). But
not all components need to be inspected at such detailed granularity. In fact,
components that are unlikely to be faulty do not need to be inspected. With
this reasoning in mind, we propose a technique, coined Dynamic Code Coverage
(DCC), that automatically adjusts the granularity per component. First, our
approach instruments the source code using a coarse granularity (e.g., package
level in Java), and then decides which components to expand based on the
output of the fault localization technique. With expanding we mean changing
the granularity of the instrumentation (e.g., in Java, for instance, instrument
classes, then methods, and finally statements). This expansion can be done in
different ways, for instance, by selecting the top ranked components, according
to a set percentage.

Our empirical evaluation demonstrates that DCC has the potential to dras-
tically reduce the execution overhead, while still maintaining the diagnostic
effectiveness of statement-based spectrum-based fault localization. In our ex-
periments, we have observed a time reduction of 27% on average. Furthermore,
a 77% reduction of the diagnostic report size was observed in our empirical
evaluation, lessening the effort required by developers to perform an inspection.

In particular, this paper makes the following contributions:

• We propose DCC, a technique that automatically decides the instrumen-
tation granularity per module in the system.

• We provide an implementation of the DCC approach within the
GZoltar (Campos et al., 2012) testing framework;

• An empirical study to validate the proposed technique, demonstrating its
efficacy and efficiency using real-world, large programs. The empirical
results shows that DCC can indeed decrease the overhead imposed in the
software under test, while still maintaining the same diagnostic accuracy as
current approaches to fault localization. DCC also decreases the diagnostic
report size when compared to traditional SFL.

This work builds on top of previous work (Perez et al., 2012), where we pro-
posed a lightweight topology-based model to estimate the diagnostic efficiency

2

of fault localization techniques, extending it as follows. First we provide a mo-
tivation for a hierarchical approach to fault localization. Second, we detail our
proposed technique, coined DCC. Finally, we provide an empirical evaluation of
the efficacy and efficiency of both DCC and our topology-based analysis model
by injecting single and multiple faults into real-world, large applications.

The remainder of this paper is organized as follows. In Section 2 we present
concepts relevant to this paper as well as a motivational example for our work.
In Section 3 the dynamic code coverage approach, DCC, is described. In Sec-
tion 4, a topology-based analysis to assess whether to use Spectrum-based Fault
Localization (SFL) or DCC is detailed. In Section 5 the findings of our empirical
evaluation are presented. We compare DCC with related work in Section 6. In
Section 7 we conclude and discuss future work.

2. Concepts & Motivational Example

In this section, we introduce the concept of program spectra, and its use
in fault localization. Throughout this paper, we use the following terminol-
ogy (Avižienis et al., 2004):

• A failure is an event that occurs when delivered service deviates from
correct service.

• An error is a system state that may cause a failure.

• A fault (defect/bug) is the cause of an error in the system.

In this paper, we apply this terminology to software programs, where faults
are bugs in the program code. Failures and errors are symptoms caused by
faults in the program. The purpose of fault localization is to pinpoint the root
cause of observed symptoms.

Definition 1 A software program Π is formed by a sequence M of one or more
statements.

Given its dynamic nature, central to the fault localization technique consid-
ered in this paper is the existence of a test suite.

Definition 2 A test suite T = {t1, . . . , tN} is a collection of test cases that are
intended to test whether the program follows the specified set of requirements.
The cardinality of T is the number of test cases in the set |T | = N .

Definition 3 A test case t is a (i, o) tuple, where i is a collection of input
settings or variables for determining whether a software system works as expected
or not, and o is the expected output. If Π(i) = o the test case passes, otherwise
fails.

3

2.1. Program Spectra

A program spectrum is a characterization of a program’s execution on a
dataset (Reps et al., 1997). This collection of data, gathered at runtime, pro-
vides a view on the dynamic behavior of a program. The data consists of
counters or flags for each software component. Various different program spec-
tra exist (Harrold et al., 2000), such as path-hit spectra, data-dependence-hit
spectra, and block-hit spectra.

In order to obtain information about which components were covered in
each execution, the program’s source code needs to be instrumented, similarly
to code coverage tools (Yang et al., 2006). This instrumentation will monitor
each component and register those that were executed. Components can be of
several detail granularities, such as classes, methods, and lines of code.

2.2. Fault Localization

A fault localization technique that uses program spectra, called SFL, exploits
information from passed and failed system runs. A passed run is a program
execution that is completed correctly, and a failed run is an execution where an
error was detected (Abreu et al., 2009c). The criteria for determining if a run
has passed or failed can be from a variety of different sources, namely test case
results and program assertions, among others. The information gathered from
these runs is their hit spectra (Abreu et al., 2009c).

The hit spectra of N runs constitutes a binary N ×M matrix A, where M
corresponds to the instrumented components of the program. Information of
passed and failed runs is gathered in a N -length vector e, called the error vector.
The pair (A, e) serves as input for the SFL technique, as seen in Figure 1.

N spectra

M components
a11 a12 · · · a1M
a21 a22 · · · a2M
...

...
. . .

...
aN1 aN2 · · · aNM

error
detection

e1
e2
...
eN

Figure 1: Input to SFL.

With this input, fault localization consists in identifying what columns of the
matrix A resemble the vector e the most. For that, several different similarity
coefficients can be used (Jain and Dubes, 1988). One of the most effective is the
Ochiai coefficient (Abreu et al., 2007), used in the molecular biology domain:

sO(j) =
n11(j)√

(n11(j) + n01(j))× (n11(j) + n10(j))
(1)

where npq(j) is the number of runs in which the component j has been touched
during execution (p = 1) or not touched during execution (p = 0), and where
the runs failed (q = 1) or passed (q = 0). For instance, n11(j) counts the

4

Audio/Video Teletext Remote

High

Medium

Low

Probability of
being faulty:

Figure 2: SFL output example.

number of times component j has been involved in failed executions, whereas
n10(j) counts the number of times component j has been involved in passed
executions. Formally, npq(j) is defined as

npq(j) = |{i | aij = p ∧ ei = q}| (2)

SFL can be used with program spectra of several different granularities.
However, it is most commonly used ad the line of code (LOC) level and at the
basic block level. Using coarser granularities would be difficult for programmers
to investigate if a given fault hypothesis generated by SFL was, in fact, faulty.
Throughout this work, we will be using a LOC level as the instrumentation
granularity for the fault localization diagnosis report.

2.3. Motivational Example

Suppose a program responsible for controlling a television set is being de-
bugged. Consider that such program has three main high-level modules:

1. Audio and video processing;

2. Teletext decoding and navigation;

3. Remote-control input.

If one is to use SFL to pinpoint the root cause of observed failures, hit
spectra for the entire application have to be gathered. Furthermore, the hit
spectra have to be of a fine granularity, such as LOC level, so that the fault is
more easily located.

An output of the SFL technique applied to this specific example can be seen
in Figure 2. The smaller squares represent each LOC of the program, which are
grouped into methods, and then into the three main modules of the program
under test.

As seen in Figure 2, every LOC in the program has an associated fault
coefficient that represents the probability of that component being faulty. In
this example, the bottom-left function of the teletext decoding and navigation
module has two LOCs with high probability of being faulty, and other two
with medium probability. The upper-right function of the teletext module also

5

contains two medium probability LOCs. There are, however, many LOCs with
low probability of containing a fault. In fact, in some methods, and even entire
modules, such as the audio/video processing and remote-control modules, all
components have low probability. Such low probability is an indication that the
fault might be located elsewhere, and thus these components need not to be
inspected first.

As SFL needs to have information about the entire program spectra to per-
form an analysis on the most probable fault locations, this can lead to scala-
bility problems, as every LOC has to be instrumented. Instrumentation can
hit execution time by as much as 50% in code coverage tools that use similar
statement-based instrumentation techniques (Yang et al., 2006). This instru-
mentation, for each statement in the code, injects a call to a method that will
log the activity of that statement. Usually this logging method will flip the
hit-spectra matrix bit Ai,j where i is the current statement and j is the current
system run. As such, a fault localization that uses hit spectra is acceptable for
debugging software applications, but may be impractical for large, real-world,
and resource-constrained projects that contain hundreds of thousands of LOCs.

In order to make SFL amenable to large, real, and resource-constrained
applications, a way to avoid instrumenting the entire program must be devised,
while still having a fine granularity for the most probable locations in the results.

3. Dynamic Code Coverage

In order to solve the potential scaling problem that automated fault local-
ization tools have, we propose a dynamic approach, called DCC. The main idea
behind this approach is that coarser instrumentation entails less performance
overhead as a more detailed instrumentation, as the number of probing instruc-
tions needed is smaller. This method uses, at first, a coarser granularity level
of instrumentation for the initial program spectra gathering. After that, it pro-
gressively increases the instrumentation detail of potential faulty components
and re-executes the tests that exercise them.

DCC is shown in Algorithm 1. It takes as parameters System, TestSuite,
InitialGranularity and FinalGranularity. These parameters correspond to
the System Under Test (SUT), its test suite, and the initial and final instru-
mentation detail levels, respectively.

First, an empty report R is created. After that, a list of the components to
instrument F is initialized with all System components. Similarly, the list of test
cases to run in each iteration T is initialized with all test cases in TestSuite.
An initial granularity G is also initialized with the desired initial exploration
granularity InitialGranularity, which can be set from a class level to a LOC
level.

After the initial assignments, the algorithm will start its iteration phase
in line 6. At the start of each iteration, every component in the list F is
instrumented with the granularity G with the method Instrument. What this
method does is to alter these components so that their execution is registered

6

Algorithm 1 Dynamic Code Coverage.

1: procedure DCC(System, TestSuite,
InitialGranularity, F inalGranularity)

2: R ← ∅
3: F ← System
4: T ← TestSuite
5: G ← InitialGranularity
6: repeat
7: Instrument(F ,G)
8: (A, e)← RunTests(T)
9: C ← SFL(A, e)

10: F ← Filter(C)
11: R ← Update(R,F)
12: T ← NextTests(TestSuite, A,F)
13: G ← NextGranularity(F)
14: until IsFinalGranularity(F ,

F inalGranularity)
15: return R
16: end procedure

in the program spectra. For this execution to be registered, a logging method
call is inserted. Depending on the granularity, the instrumentation is performed
differently. In a statement-level granularity, each logging call is placed before its
corresponding statement, whereas at a method-level the logging call is placed
before any other method statements. In the case of a class-level granularity
(and assuming we are using Java), we can intercept the classloader request to
load that class, and log it as covered.

Afterwards, the test cases T are run with the method RunTests. Its out-
put is a hit spectra matrix A for all the previously instrumented components,
and the error vector e, that states what tests passed and what tests failed. As
explained in Section 2.2, these are the necessary inputs for spectrum-based fault
localization, performed in line 9. This SFL method calculates, for each instru-
mented component, its failure coefficient using the Ochiai coefficient, previously
shown in equation 1.

Following the fault localization step, the components are passed through a
Filter that eliminates the low probability ones according to a set threshold,
and the list F is updated, as well as the fault localization report R.

In line 12, the test case set is updated to run only the tests that touch the
current components F . Such tests can be retrieved by analyzing the coverage
matrix A.

The last step in the iteration is to update the instrumentation granularity
for next iterations. Method NextGranularity finds the coarser granularity
in all the components of list F , and updates that granularity to the next level
of detail.

7

Every iteration is tested for recursion with IsFinalGranularity, that re-
turns true if every component in the list F is at the desired final granularity
defined in FinalGranularity. This final granularity can be of different detail
levels, such as method level or LOC level, according to the needs of the software
project being tested. If the IsFinalGranularity condition is not met, a new
iteration is performed.

Lastly, the DCC algorithm returns the fault localization report R. R con-
tains diagnosis candidates of different granularities, typically with the top ones
at a finer-grained level of detail.

In each iteration of this algorithm, tests have to be run to generate the pro-
gram spectra, and then the SFL algorithm is performed. Running the test cases
entails a time complexity of O(N) and SFL has a time complexity of O(M.N),
where N is the number of test cases and M is the number of components of
the system. Although all the filtering operations mentioned in this work entail
a complexity of O(M), there may be filters suitable to be plugged into DCC
that entail a non-linear complexity. Assuming a worst case scenario, where no
components are ever filtered, then the DCC algorithm has a time complexity of
O(I.M.N), where I is the total number of iterations performed, and depends
on the initial and final granularity parameters (note that, in our approach, the
worst case for the number of iterations I is 3). As for the space complexity, the
worst case scenario is that all components are explored. Space complexity, like
SFL, is O(M.N).

DCC’s performance is very dependent on the Filter function, which is
responsible to decide whether or not it is required to zoom-in1 in a given com-
ponent. Although many filters may be plugged into the algorithm, in this paper
we study the impact of the percentile filter Pf . This filter discards components
that have a similarity coefficient below a given percentile. For instance, the
filter Pf = 0.80 discards a component c if its similarity score sO(c) is lower than
80% of the other scores.

During our initial experiments with the DCC technique, we have also con-
sidered a filter that would discard a component c if its similarity sO(c) was lower
than a given threshold. The results obtained (in terms of processing time and
diagnostic accuracy) varied greatly across different projects. These inconsistent
results happen since this filter depends on the coverage density of the program.
For instance, in certain projects, the top ranked components would score a sO
value of 1.0, whereas top ranked component scores from other projects would
be closer to 0.5. Thus, we have discarded this filter.

The main advantages of our dynamic code coverage algorithm, DCC, are
twofold. The first one is the decrease of instrumentation overhead in the pro-
gram execution (as demonstrated by the empirical results). This is due to the
fact that not every LOC is instrumented – only the LOCs most likely to contain
a fault will be instrumented at that level of detail.

The second advantage is the fact that, in every iteration, the generated

1In this context, zooming-in is to explore the inner components of a given component.

8

Audio/Video Teletext Remote

High

Medium

Low

Probability of
being faulty:

Figure 3: DCC output example.

program spectra matrices, seen in line 8 of Algorithm 1, will be shorter in size
when compared to traditional SFL. That way, the fault coefficient calculation,
described in Section 2.2, will be inherently faster, as there are fewer components
to calculate.

The iterative nature of the DCC algorithm also provides some benefits. In
each iteration, the algorithm is walking towards a solution, narrowing down the
list of components which are likely to contain a fault. As such some information
about those components can be made available, directing the developer to the
fault location even before the algorithm is finished. Secondly, as low probability
components are being filtered, the final report will also be shorter, providing
the developer with a more concise fault localization report.

To illustrate the overhead reduction, let us revisit the motivational example
given in Section 2.3. If use the DCC approach to debug this program, we
get the output shown in Figure 3. In this example, a filter responsible for not
exploring components with low suspiciousness of containing faults is being used.
In particular, the algorithm executes as follows:

1. The three modules – Audio/Video, Teletext, and Remote – are instru-
mented at the module level. Upon running the tests and SFL, the only
component with high probability of being faulty is the Teletext module.

2. The Teletext module is instrumented at a method level. After that, the
tests that touch the Teletext module are run. Fault localization states that
the upper-right (UR) and the bottom-left (BL) functions have medium and
high probability of being faulty, respectively.

3. The UR and BL functions are instrumented at the LOC level. After
the tests that touch those functions are run and fault localization is per-
formed, every LOC in those functions has an associated fault coefficient.
As all the non-filtered components are of LOC granularity, the execution
is terminated.

It is worth noting that this approach reports only LOCs which are more likely
to contain a fault and, at the same time, requires less software components to be
instrumented – 13 in total. Compared to the pure SFL approach of Section 2.3,

9

where 40 components were instrumented, DCC has reduced instrumentation
(thus, overhead) by 67.5%.

4. Topology Model

DCC, as an iterative technique, is aimed at improving the execution time
of the fault localization procedure. However, for some projects, the task of
re-instrumenting and re-testing may consume more time than performing a sin-
gle iteration with a fine-grained instrumentation throughout the entire project.
Even though our approach only re-executes a subset of the test suite, this re-
peated instrumentation and execution step can incur in a higher overall ex-
ecution time. This can happen if test cases’ activity patterns encompass a
significant portion of a project’s components as DCC has to re-run all tests that
cover suspicious components. A lower detail on component activity will result
in the existence of ambiguity groups (González-Sanchez et al., 2011a): groups
of components with identical coverage signatures, undistinguishable from each
other. As spectrum-based techniques rely on differences and similarities be-
tween components and the error vector, this will result in a poor diagnostic
performance.

This kind of behavior is common for projects that have either a relatively
small codebase, or an unbalanced code topology. In both of these instances
each test covers a large portion of the code, and the resulting program spec-
tra matrix will be dense, therefore many software components will have to be
zoomed in. González-Sanchez et al. (2011c) have shown that the optimal cov-
erage density for fault localization is ρ = 0.5, according to the IG (information
gain) heuristic (González-Sanchez et al., 2011b). In this section, we describe
our analysis methodology for quickly estimating a software project’s execution
coverage density ρ by inspecting its topology, as a way do decide what fault
localization technique to use for that project.

This analysis, initially proposed in (Perez et al., 2012), is intended to provide
a general and coarse overview of a project’s execution based on its source code,
in a fast and lightweight manner. It extrapolates information based on how a
program is structured. As such, programming paradigms that enforce a cer-
tain hierarchy (common throughout different projects) such as object-oriented
programming (OOP), is needed. We use this hierarchy to construct a model
of the system, facilitating its subsequent analysis. Test cases throughout the
project should be also identifiable with minimal static analysis. Throughout
this paper, we will be using the OOP hierarchy of Java (in descending order of
granularity: packages, classes, methods and statements) for all the examples of
how our model is constructed and processed.

As a first step, a tree model of the system topology is constructed. This
tree’s root node symbolizes the project, with all the other nodes being either
packages, classes or methods. Method nodes are the lowest granularity nodes,
aimed at speeding up the analysis. One thing to note is that, because we are not
analyzing the statements of a method, local classes (i.e., classes that are defined
inside methods) also do not show up in the tree. A class node can also have an

10

annotation stating that a certain class is a test case. This way, test cases are
easily identifiable. The edges represent relations (e.g., classes are connected to
their respective package).

After the topology tree is constructed, its analysis can be performed. For
that we use a score function S, defined as

S =
σm/c

Nm
+
σc/p

Nc
+ e−

Nc−1
C + e−

Nt−1
T (3)

The first two terms of the score function S are related to the system’s cov-
erage matrix density: σm/c and σc/p are the standard deviation of methods per
class and of classes per package, and Nm and Nc are the number of methods and
classes, respectively. What both of these terms are estimating is if the topol-
ogy tree exhibits a balanced structure, or if the nodes show a high variance of
children. For example, if a certain package contains more classes than other
packages, one can assume that the contents of this package are more likely to be
touched by an execution than the ones in a package with less classes. Similarly,
if we increase the detail level, the same can be said for the number of class
methods. Both terms will tend to zero if the tree is balanced.

The last two terms of the score function S estimate the system’s coverage
matrix size. Nt is the number of test cases. Coefficients C and T are the weights
that the number of classes and tests have in the score function, and they can
be adjusted according to a project’s topology, and determine the impact that
each term has in the overall score function. Being inverse exponential functions,
both of these terms exhibit a high value if a system contains few classes or tests,
but this value rapidly decreases as the number of classes and tests grows.

The result of this score function S can, then, be regarded as a coarse extrap-
olation of the attributes of the subject’s coverage matrix. If the result of this
function is a value close to zero, this means that the matrix should be sparse
and fairly big in size. Otherwise, if the value is not close to zero, this means
that the matrix is small or/and rather dense.

The score function S can be used as a decision support mechanism. If we
revisit our fault localization example from the previous section, we can use this
analysis to support the use of DCC or SFL to debug a certain project. For that,
one can use:

FaultLocalization =

{
DCC if S ≤ E
SFL otherwise

meaning that the best fault localization for a given project is DCC if its score
is below a given threshold E, which can also be adjusted, and SFL if the score
is above the specified threshold. Note that the decision above can be refined to
decide not to use any fault localization technique.

5. Empirical Evaluation

In this section, we evaluate the validity and performance of the DCC ap-
proach for real projects. This approach, as well as the topology analysis model,

11

were implemented in the GZoltar (Campos et al., 2012) testing framework for
Eclipse. First, we introduce the programs under analysis and the evaluation
metrics. Then, we discuss the empirical results and finish this section with a
threats to validity discussion.

5.1. Experimental Setup

For our empirical study, six subjects written in Java were considered:

• NanoXML2 – a small XML parser.

• org.jacoco.report – report generation module for the JaCoCo3 code
coverage library.

• Xstream4 – an object serialization library.

• JGAP5 – a genetic algorithms library.

• XML-Security – a component library implementing XML signature and
encryption standards. This library is part of the Apache Santuario6

project.

• JMeter7 – a desktop application designed to load test functional behavior
and measure performance of web applications.

The project details of each subject are in Table 1. The LOC count informa-
tion was gathered using the metrics calculation and dependency analyzer plugin
for Eclipse Metrics8. Test count and coverage percentage were collected with
the Java code coverage plugin for Eclipse EclEmma9.

Table 1: Experimental Subjects.

Subject Version LOCs (M) Test Cases Coverage

NanoXML 2.2.6 5393 8 53.2%
org.jacoco.report 0.5.5 5979 225 97.2%
Xstream 1.4.3 35944 1418 84.8%
JGAP 3.6.2 48590 1377 67.1%
XML-Security 1.5.0 60946 461 59.8%
JMeter 2.6 127359 593 34.2%

2NanoXML – http://devkix.com/nanoxml.php
3JaCoCo – http://www.eclemma.org/jacoco/index.html
4Xstream – http://xstream.codehaus.org/
5JGAP – http://jgap.sourceforge.net/
6Apache Santuario – http://santuario.apache.org/
7JMeter – http://jmeter.apache.org/
8Metrics – http://metrics.sourceforge.net/
9EclEmma – http://www.eclemma.org/

12

To assess the efficiency and effectiveness of DCC when tackling a single
bug and multiple simultaneous bugs, the following experiments were performed,
using 25 faulty versions per subject program. As the subject programs are bug-
free, we injected common mistakes in the programs: one fault in fifteen versions,
and five simultaneous faults in 10 versions and executed:

• Fault localization with SFL. This is the reference baseline.

• Fault localization with DCC.

• The topology analysis model, followed by the fault localization technique
that the model considers appropriate based on the subject’s score.

We have used C = 100 and T = 50 in our topology model. These values
were obtained by training the model with a set of software projects for which
we had previously labeled the best fault localization technique that suited each
specific project. The criteria for choosing one technique over the other was their
execution time. The model decides employing DCC over SFL when the score
function is S ≤ 1.0.

The metrics gathered were the fault localization execution time, the size
of the fault localization report, and the average LOCs needed to be inspected
until the fault is located. The latter metric can be calculated by sorting the
fault localization report by the value of the coefficient, and finding the injected
fault’s position. This metric assumes that the developer performs the inspection
in an ordered manner, starting from the highest fault coefficient LOCs.

As spectrum-based fault localization creates a ranking of components in
order of likelihood to be at fault, we can retrieve how many components we still
need to inspect until we hit a faulty one. Let d ∈ {1, . . . ,K}, where K is the
number of ranked components and K ≤M , be the index of the statement that
we know to contain the fault. For all j ∈ {1, . . . ,M}, let sj . Then the ranking
position of the faulty statement is given by

τ =
|{j|sj > sd}|+ |{j|sj ≥ sd}| − 1

2
(4)

|{j|sj > sd}| counts the number of components that outrank the faulty one,
and |{j|sj ≥ sd}| counts the number of components that rank with the same
probability as the faulty one plus the ones that outrank it. In the case of
multiple faults, we are considering the first faulty component in the ranking
(see Steimann et al. (2013) for more information). As the user does not know
a priori how many faults the system has, it is assumed that he/she re-runs the
fault localization technique after fixing the faulty component.

We define quality of diagnosis as the effectiveness to pinpoint the faulty
component. As said before, this metric represents the percentage of components
that need not be considered when searching for the fault by traversing the
ranking. It is defined as

(1− τ

KSFL
) · 100% (5)

13

where KSFL is the number of ranked components of SFL without DCC – the
reference baseline.

For each faulty version, we have also gathered the execution time of the
test suite, without any instrumentation. This will serve as a reference for the
theoretical lower bound of fault localization techniques in terms of execution
time (i.e., no instrumentation overhead). However, note that all other execution
times besides this test execution include a GZoltar bootstrapping phase where,
for instance, the code tree is traversed and every component is assigned a unique
id.

The experiments were run on a 2.7 GHz Intel Core i7 MacBook Pro with 4
GB of RAM, running OSX Lion.

5.2. Experimental Results

Figures 4 to 9 summarize the overall execution time outcomes for all experi-
mental subjects. These results are gathered by running the entire fault localiza-
tion experiments detailed in the previous section, and do not pertain only to the
instrumentation overhead. Also shown is the execution time of running the test
suite without any instrumentation, evidencing the optimal lower bound of fault
localization techniques that require test executions. Note that the difference
between test execution times and fault localization execution times is not only
due to instrumentation overheads, but also other factors, such as the similarity
coefficient calculation and initial bootstrapping.

Due to space constraints, only one DCC filter is shown. We have chosen
to show the Pf = 70% filter, since it was the best performing filter of those
considered, and is able to find the injected faults for every experiment (i.e., the
resulting diagnostic report contains the injected fault).

The first two subjects to be analyzed were NanoXML and org.jacoco.report,
whose experimental results can be seen in Figures 4 and 5. As a result of having a
small codebase, both projects are scored above the exploration threshold by the
topology-based analysis. This means that the recommended fault localization
method to be used in these projects is SFL. As the aforementioned figures
depict, the SFL execution time is indeed better than that of DCC.

 0

 700

 1400

 2100

 2800

 3500

 4200

 4900

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(a) Single fault

 0

 700

 1400

 2100

 2800

 3500

 4200

 4900

01 02 03 04 05 06 07 08 09 10

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(b) 5 simultaneous faults

Figure 4: NanoXML execution time results.

14

 0

 2500

 5000

 7500

 10000

 12500

 15000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(a) Single fault

 0

 2500

 5000

 7500

 10000

 12500

 15000

01 02 03 04 05 06 07 08 09 10

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(b) 5 simultaneous faults

Figure 5: org.jacoco.report execution time results.

 0

 12000

 24000

 36000

 48000

 60000

 72000

 84000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(a) Single fault

 0

 12000

 24000

 36000

 48000

 60000

 72000

 84000

01 02 03 04 05 06 07 08 09 10

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(b) 5 simultaneous faults

Figure 6: Xstream execution time results.

These kinds of projects, small in size and with a low amount of test cases,
but with a coverage of over 50% are not fit for use with regular DCC. Their
generated program spectra matrices, detailed in Sections 2.1 and 2.2 will be
rather dense. Because of this, many components would have similar coefficients,
rendering the filtering operation ineffective, keeping a lot of components to
be re-instrumented and re-tested in subsequent iterations. Therefore, in these
particular cases, the use of DCC’s repeated instrumentation and testing incurs
in an increase of the overall execution time.

NanoXML and org.jacoco.report show, then, a very similar execution time
performance using both approaches. As seen in Table 3, the diagnostic accu-
racy of both approaches is the same. The diagnostic report sizes of the two
approaches are identical for every execution, and so is the quality of diagnosis
– 79% on average (standard deviation: σ = 0.20).

The other test subjects, Xstream (Figure 6), JGAP (Figure 7), XML-Security
(Figure 8) and JMeter (Figure 9) are scored below the exploration threshold,
and thus our topology model indicates that they should by explored with DCC.

All of these test subjects show improvements in performance when DCC is
used, even when more than one fault is present. This is due to the fact that

15

 0

 30000

 60000

 90000

 120000

 150000

 180000

 210000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(a) Single fault

 0

 30000

 60000

 90000

 120000

 150000

 180000

 210000

01 02 03 04 05 06 07 08 09 10

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(b) 5 simultaneous faults

Figure 7: JGAP execution time results.

 0

 15000

 30000

 45000

 60000

 75000

 90000

 105000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(a) Single fault

 0

 15000

 30000

 45000

 60000

 75000

 90000

 105000

01 02 03 04 05 06 07 08 09 10

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(b) 5 simultaneous faults

Figure 8: XML-Security execution time results.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(a) Single fault

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

01 02 03 04 05 06 07 08 09 10

Ex
ec

ut
io

n
tim

e
(m

s)

Injected Faults

Tests
DCC

Topology Analysis + Fault Localization
SFL

(b) 5 simultaneous faults

Figure 9: JMeter execution time results.

16

the generated program spectra matrices are sparser. Also, as programs grow in
size, the overhead of a fine-grained instrumentation (used in methodologies such
as SFL) is much more noticeable. In this kind of sizable projects (see project
information in Table 1), and if the matrix is sparse enough, it is preferable to
re-run some of the tests, than to instrument every LOC at the start of the fault
localization process.

Using DCC when appropriate (i.e., using the topology model to decide the
fault localization method) can, then, reduce the execution time by 27% on
average (σ = 0.24) in this kind of projects. We can see from Table 2 a comparison
for the average execution times for both SFL and DCC for all projects and
their respective number of statements (LOCs), as well as the execution times of
the test cases without any kind of instrumentation. The test execution times
can give us an insight on the theoretical lower bound times for any dynamic
analysis that uses test information. The execution times for both SFL and DCC
encompass all steps of these techniques, including instrumentation, execution
and diagnostic report generation. We have refrained from presenting individual
overheads for the different steps, as we are interested in the algorithms as a
whole. As evidenced from the previous discussion, projects with higher program
sizes benefit from using DCC. The other metrics gathered in this empirical
evaluation also show a consistent improvement over SFL in every project.

On average, the DCC approach reduced 77% (σ = 0.16) the generated fault
localization ranking, providing a more concise report when compared to SFL.
This is due to the fact that many coarsely detailed components (e.g., classes
or methods) were filtered out of the algorithm, and thus were not explored
and ranked at the line of code level. Therefore, the report size is reduced
when compared to SFL because the detail granularity changes the number of
components.

Table 2: Execution times and DCC time reduction.

Execution Time (s) DCC Time
Subject LOCs Tests (s) SFL DCC Reduction (%)

NanoXML 5393 0.6 1.6 2.6 -62.5
org.jacoco.report 5979 2.7 4.9 7.3 -49.0
Xstream 35944 22.0 50.4 39.1 22.4
JGAP 48590 33.2 126.9 75.3 40.7
XML-Security 60946 19.8 62.6 47.7 23.8
JMeter 127359 16.5 45.1 33.9 24.8

Once again, we can see from Table 3 that the diagnostic accuracy has re-
mained practically unaltered when comparing DCC to traditional SFL. In fact,
the quality of diagnosis, described in equation 5, only exhibited a slight im-
provement, from 95% (σ = 0.09) without DCC to 96% (σ = 0.09) with DCC.
Note that, for multiple faults, the order by which multiple faults appear in the
ranking is the same in both SFL and DCC, meaning that both techniques will
lead to the same diagnostic results.

17

Table 3: Number of statements inspected until the fault is located (τ).

τ
Subject SFL DCC

NanoXML 81.6 81.6
org.jacoco.report 13.1 13.1
Xstream 9.1 9.7
JGAP 42.0 45.8
XML-Security 13.3 16.6
JMeter 16.9 17.1

Although diagnostic accuracy remains unchanged, we should point out that
our τ metric assumes that developers inspect faults by their suspiciousness rank-
ing. However, according to Parnin and Orso (2011), this is not always the case:
developers do not closely follow a statement ranking computed by fault local-
ization tools. Therefore, the fact that our approach produces less suspicious
components (as the diagnostic report size is considerably smaller) is indeed an
important and meaningful feature of the DCC technique. Another example
where a reduced report size is useful is in the use of code visualizations to rep-
resent the diagnostic report (e.g., (Gouveia et al., 2013)). Smaller diagnostic
reports yield less cluttered visualizations, allowing users to focus on the more
suspicious components.

It is worth to note that for percentile filters whose threshold was higher than
70%, some faults were not found in the diagnostic report, because they were not
explored. Percentile filters below 70% presented slower fault localization results.
When we decrease this threshold in the filter, the diagnostic report size increases,
until it reaches the original size. It is also slower because, in every iteration,
more components are instrumented and also, as a consequence, more tests need
to be executed. Based on our empirical evidence, we recommend a Pf = 0.70
when DCC is used to perform fault localization.

5.3. Threats to Validity

The main threat to external validity of these empirical results is the fact
that only six test subjects were considered. Although the subjects were all real,
open source software projects, it is plausible to assume that a different set of
subjects, having inherently different characteristics, may yield different results.
Other threat to external validity is related to the injected faults used in the
experiments. These faulty program versions, despite being 25 in total for each
experimental subject, may not represent the entire conceivable software fault
spectrum. Also, potentially, the overhead exhibited by the instrumentation is
different in other software programs. For instance, if programs need to wait for
a network reply, the execution time after instrumentation will be only a little
more than that of the original execution time. One solution to mitigate this
problem is to define the starting detail granularity of the instrumentation in

18

a per-component basis, so that these code regions can be manually configured
to be executed only once. Furthermore, the topology model values C and T ,
trained with a set of manually labeled projects, may not generalize for every
kind of software project.

Threats to internal validity are related to some fault in the DCC implemen-
tation, or any underlying implementation, such as SFL or even the instrumen-
tation for gathering program spectra. To minimize this risk, some testing and
individual result checking were performed before the experimental phase.

6. Related Work

The process of pinpointing the fault(s) that led to symptoms (failures/errors)
is called fault localization, and has been an active area of research for the past
decades. Based on a set of observations, automatic approaches to software fault
localization yield a list of likely fault locations, which is subsequently used either
by the developer to focus the software debugging process. Depending on the
amount of knowledge that is required about the system’s internal component
structure and behavior, the most predominant approaches can be classified as
(1) statistical approaches or (2) reasoning approaches. The former approach
uses an abstraction of program traces, dynamically collected at runtime, to
produce a list of likely candidates to be at fault, whereas the latter combines a
static model of the expected behavior with a set of observations to compute the
diagnostic report.

Statistics-based fault localization techniques, as stated above, use an ab-
straction of program traces, also known as program spectra, to find a statistical
relationship with observed failures. Program spectra are collected at run-time,
during the execution of the program, and many different forms exist (Harrold
et al., 2000). For example, component-hit spectra indicate whether a component
was involved in the execution of the program or not. In contrast to model-based
approaches, program spectra and pass/fail information are the only dynamic
source of information used by statistics-based techniques.

Well-known examples of statistical approaches are the Tarantula tool
by Jones and Harrold (2005), the Nearest Neighbor technique by Renieris and
Reiss (2003), the Sober tool by Liu et al. (2006), the work of Liu and Han
(2006), CrossTab by Wong et al. (2008), the Cooperative Bug Isolation (CBI)
by Liblit and his colleagues (Liblit et al., 2005; Liblit, 2008; Nainar et al., 2007;
Zheng et al., 2006), the Time Will Tell approach by Yilmaz et al. (2008), MKBC
by Xu et al. (2011) and the causal inference approach by Baah et al. (2010).
Although differing in the way they derive the statistical fault ranking, all tech-
niques are based on measuring program spectra. Note that this list is by no
means exhaustive.

A statistics-based approach that also uses re-instrumentation is
HOLMES (Chilimbi et al., 2009). This approach tries to avoid instru-
mentation overhead by initially profiling only the parts of code that more
likely contain the root causes of bugs. These code parts are selected based
on stack traces of coverage reports, and a static analysis on the system.

19

Next, after re-execution, HOLMES analyses the partial profiles to compute a
statistical model of the program. If the model identifies bug predictors that
explain the failures, HOLMES returns them as diagnostic candidates. If the
model is inconclusive, then HOLMES increases the number of code parts to
be instrumented, using dependency analysis. In contrast, DCC starts with a
lightweight, coarse instrumentation of the program, and iteratively narrows
the search space (by increasing the instrumentation detail in a subset of
components) to compute the suspicious diagnostic candidates.

Toolsets providing fault localization using spectrum-based fault localization
exist, namely in Zoltar (Janssen et al., 2009) and Tarantula (Jones et al., 2002;
Jones and Harrold, 2005) for C projects, and GZoltar (Riboira et al., 2011) for
Java projects. However, none of these tools employ a dynamic code coverage
approach to SFL, having to instrument the entire SUT. Also, their instru-
mentation granularity is set at a LOC level of detail. A DCC approach could
certainly be added to any of these tools, with minimal algorithmic changes, pro-
vided that the underlying instrumentation tool that these tools use to gather
program spectra supports different levels of detail.

Statistical approaches require several traces, and their pass/fail informa-
tion, in order to obtain an accurate diagnosis. Traces also need to be varied, or
else would result in the existence of ambiguity groups (González-Sanchez et al.,
2011a) (i.e. groups of components with identical coverage signatures, undis-
tinguishable from each other). The commonly used source for execution traces
is the SUT’s test suite, which may not be of sufficient quality to obtain ac-
curate diagnostic cues. Some approaches have been proposed to generate test
cases (Campos et al., 2013) and/or to select the best test cases (Baudry et al.,
2006) to maximize the fault localization efficiency. Both of these approaches are
orthogonal to our DCC approach, and the contributions are complementary: the
test suite can be generated/selected and then used to locate faults with DCC.

Reasoning approaches to fault localization use prior knowledge of the sys-
tem, such as required component behavior and interconnection, to build a model
of the correct behavior of the system. An example of a reasoning technique is
model-based diagnosis (see, e.g., (de Kleer and Williams, 1987)), where a di-
agnosis is obtained by logical inference from the static model of the system,
combined with a set of run-time observations. In the software engineering com-
munity this approach is often called model-based software debugging (Mayer
and Stumptner, 2007). Well-known approaches to model-based software debug-
ging include the approaches of Friedrich et al. (1996, 1999), Nica and Wotawa
(2008), Wotawa et al. (2002), and Mayer and Stumptner (2007).

As model-based techniques technique may suffer from large diagnostic results
and not scale to sizable projects, some work was already combining SFL with
Model-Based Software Debugging (MBSD) has been proposed (Mayer et al.,
2008; Abreu et al., 2009a), where MBSD is used to refine the output report
generated by the spectrum-based fault localization, filtering the components
that do not explain the observed failures. Our DCC approach could also be
combined with this technique, by performing the fault localization until a certain
middle-grained level of component detail (e.g., method level), and submit the

20

top components to be analyzed by MBSD.
Recent approaches to fault localization include the work of Burger and Zeller

(2011) and Rößler et al. (2012). These works use experimental approaches: tech-
niques that may alter inputs and object iterations, among others, to narrow the
diagnostic report. Provided they have at least one failing test, these approaches
can generate subsequent test cases to increase diagnostic accuracy. The down-
side of these approaches is the substantial overhead required to generate test
cases.

7. Conclusions & Future Work

We have shown that current approaches to spectrum-based fault localization
face some challenges concerning scalability due to the input gathering overhead
caused by a fine grained instrumentation throughout the system under test. For
instance, this may be an issue in resource-constrained systems. A solution to
this problem was presented, coined Dynamic Code Coverage (DCC), that ini-
tially uses a coarser granularity of instrumentation, and progressively increases
the instrumentation detail of potential faulty components. In our empirical
evaluation, we have validated our approach, and demonstrated that it not only
reduces the average execution time by 27%, but also reduces the average num-
ber of components reported to the user by 77%, lessening the report inspection
burden.

As for future work, some aspects of the dynamic code coverage technique
still require further investigation. One of those is the way of how the initial
system granularity is established. Currently, this value is set manually and is
the same across the entire system under test. A way to change this would be by
using static analysis to assess program information and to adjust the system’s
initial granularity accordingly. Another approach would be to learn what were
the most frequently expanded components from previous executions, and change
these components’ initial granularity independently. Another issue that requires
further investigation pertains to the filtering methods. It is possible that there
are better filtering methods than those presented in this paper, namely methods
that employ dynamic strategies, that change the cutting threshold based on
program spectra analysis.

Acknowledgements

This work is financed by the ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) within project
PTDC/EIA-CCO/116796/2010.

21

References

Abreu, R., Mayer, W., Stumptner, M., van Gemund, A.J.C., 2009a. Refining
spectrum-based fault localization rankings, in: Proceedings of the 2009 ACM
Symposium on Applied Computing, SAC 2009, pp. 409–414.

Abreu, R., Zoeteweij, P., van Gemund, A.J.C., 2007. On the accuracy of
spectrum-based fault localization, in: Proceedings of the Testing: Academic
and Industrial Conference Practice and Research Techniques - MUTATION,
pp. 89–98.

Abreu, R., Zoeteweij, P., van Gemund, A.J.C., 2009b. Spectrum-based multi-
ple fault localization, in: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2009, pp. 88–99.

Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C., 2009c. A practi-
cal evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 1780–1792.

Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.E., 2004. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable Secure Computing 1, 11–33.

Baah, G.K., Podgurski, A., Harrold, M.J., 2010. Causal inference for statistical
fault localization, in: Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA 2010, pp. 73–84.

Baudry, B., Fleurey, F., Traon, Y.L., 2006. Improving test suites for efficient
fault localization, in: Proceedings of the 28th International Conference on
Software Engineering, ICSE 2006, pp. 82–91.

Burger, M., Zeller, A., 2011. Minimizing reproduction of software failures, in:
Proceedings of the 20th International Symposium on Software Testing and
Analysis, ISSTA 2011, pp. 221–231.

Campos, J., Abreu, R., Fraser, G., d’Amorim, M., 2013. Entropy-Based Test
Generation for Improved Fault Localization, in: Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2013, pp. 257–267.

Campos, J., Riboira, A., Perez, A., Abreu, R., 2012. GZoltar: an eclipse plug-
in for testing and debugging, in: Proceedings of the 27th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2012, pp.
378–381.

Chilimbi, T.M., Liblit, B., Mehra, K.K., Nori, A.V., Vaswani, K., 2009. Holmes:
Effective statistical debugging via efficient path profiling, in: Proceedings of
the 31st International Conference on Software Engineering, ICSE 2009, pp.
34–44.

22

Friedrich, G., Stumptner, M., Wotawa, F., 1996. Model-based diagnosis of hard-
ware designs, in: Proceedings of the 12th European Conference on Artificial
Intelligence, ECAI 1996, pp. 491–495.

Friedrich, G., Stumptner, M., Wotawa, F., 1999. Model-based diagnosis of
hardware designs. Artificial Intelligence 111, 3–39.

González-Sanchez, A., Abreu, R., Gross, H.G., van Gemund, A., 2011a. Pri-
oritizing tests for fault localization through ambiguity group reduction, in:
Proceedings of the 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2011, pp. 83–92.

González-Sanchez, A., Abreu, R., Gross, H.G., van Gemund, A.J.C., 2011b.
Spectrum-based sequential diagnosis, in: Proceedings of the 25th AAAI Con-
ference on Artificial Intelligence, AAAI 2011, pp. 189–196.

González-Sanchez, A., Gross, H.G., van Gemund, A.J.C., 2011c. Modeling the
diagnostic efficiency of regression test suites, in: Proceedings of the 4th Inter-
national IEEE Conference on Software Testing, Verification and Validation
Workshops, ICST Workshops 2011, pp. 634–643.

Gouveia, C., Campos, J., Abreu, R., 2013. Using HTML5 visualizations in soft-
ware fault localization, in: Proceedings of the 1st IEEE Working Conference
on Software Visualization, VISSOFT 2013, pp. 1–10.

Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L., 2000. An empirical
investigation of the relationship between spectra differences and regression
faults. Software Testing, Verification, and Reliability 10, 171–194.

Jain, A.K., Dubes, R.C., 1988. Algorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

Janssen, T., Abreu, R., van Gemund, A.J.C., 2009. Zoltar: A toolset for auto-
matic fault localization, in: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2009, pp. 662–664.

Jones, J.A., Harrold, M.J., 2005. Empirical evaluation of the tarantula auto-
matic fault-localization technique, in: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2005, pp.
273–282.

Jones, J.A., Harrold, M.J., Stasko, J.T., 2002. Visualization of test informa-
tion to assist fault localization, in: Proceedings of the 22nd International
Conference on Software Engineering, ICSE 2002, pp. 467–477.

de Kleer, J., Williams, B.C., 1987. Diagnosing multiple faults. Artificial Intel-
ligence 32, 97–130.

Liblit, B., 2008. Cooperative debugging with five hundred million test cases, in:
Proceedings of the 2008 International Symposium on Software Testing and
Analysis, ISSTA 2008, pp. 119–120.

23

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I., 2005. Scalable statis-
tical bug isolation, in: Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, PLDI 2005, pp. 15–26.

Liu, C., Fei, L., Yan, X., Han, J., Midkiff, S., 2006. Statistical debugging: A hy-
pothesis testing-based approach. IEEE Transactions on Software Engineering
32, 831–848.

Liu, C., Han, J., 2006. Failure proximity: a fault localization-based approach,
in: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2006, pp. 46–56.

Mayer, W., Abreu, R., Stumptner, M., van Gemund, A.J., 2008. Prioritiz-
ing model-based debugging diagnostic reports, in: Proceedings of the 19th
International Workshop on Principles of Diagnosis, DX 2008, pp. 127–134.

Mayer, W., Stumptner, M., 2007. Model-Based Debugging State of the Art
And Future Challenges. Electronic Notes in Theoretical Computer Science
174, 61–82.

Nainar, P.A., Chen, T., Rosin, J., Liblit, B., 2007. Statistical debugging us-
ing compound boolean predicates, in: Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ISSTA 2007, pp. 5–15.

Nica, M., Wotawa, F., 2008. From constraint representations of sequential code
and program annotations to their use in debugging, in: Proceedings of the
18th European Conference on Artificial Intelligence, ECAI 2008, pp. 797–798.

Parnin, C., Orso, A., 2011. Are automated debugging techniques actually help-
ing programmers?, in: Proceedings of the 20th International Symposium on
Software Testing and Analysis, ISSTA 2011, pp. 199–209.

Perez, A., Riboira, A., Abreu, R., 2012. A topology-based model for estimating
the diagnostic efficiency of statistics-based approaches, in: Proceedings of
the 23rd IEEE International Symposium on Software Reliability Engineering
Workshops, ISSRE Workshops 2012, pp. 171–176.

Renieris, M., Reiss, S.P., 2003. Fault localization with nearest neighbor queries,
in: Proceedings of the 18th IEEE International Conference on Automated
Software Engineering, ASE 2003, pp. 30–39.

Reps, T.W., Ball, T., Das, M., Larus, J.R., 1997. The use of program pro-
filing for software maintenance with applications to the year 2000 problem,
in: Proceedings 6th European Software Engineering Conference Held Jointly
with the 5th Symposium on Foundations of Software Engineering, ESEC/FSE
1997, pp. 432–449.

Riboira, A., Abreu, R., Rodrigues, R., 2011. An OpenGL-based eclipse plug-
in for visual debugging, in: Proceedings of the 1st Workshop on Developing
Tools as Plug-ins, TOPI 2011, pp. 60–60.

24

Rößler, J., Fraser, G., Zeller, A., Orso, A., 2012. Isolating failure causes through
test case generation, in: Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pp. 309–319.

Steimann, F., Frenkel, M., Abreu, R., 2013. Threats to the validity and value
of empirical assessments of the accuracy of coverage-based fault locators, in:
Proceedings of the 2013 International Symposium on Software Testing and
Analysis, ISSTA 2013, pp. 314–324.

Wong, W.E., Wei, T., Qi, Y., Zhao, L., 2008. A crosstab-based statistical
method for effective fault localization, in: Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, ICST 2008, pp.
42–51.

Wotawa, F., Stumptner, M., Mayer, W., 2002. Model-based debugging or how
to diagnose programs automatically, in: Proceedings of the 15th International
Conference on Industrial and Engineering, Applications of Artificial Intelli-
gence and Expert Systems, IEA/AIE 2002, pp. 746–757.

Xu, J., Chan, W.K., Zhang, Z., Tse, T.H., Li, S., 2011. A dynamic fault
localization technique with noise reduction for java programs, in: Proceedings
of the 11th International Conference on Quality Software, QSIC 2011, pp. 11–
20.

Yang, Q., Li, J.J., Weiss, D.M., 2006. A survey of coverage based testing
tools, in: Proceedings of the 2006 International Workshop on Automation of
Software Test, AST 2006, pp. 99–103.

Yilmaz, C., Paradkar, A.M., Williams, C., 2008. Time will tell: fault localization
using time spectra, in: Proceedings of the 30th International Conference on
Software Engineering, ICSE 2008, pp. 81–90.

Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A., 2006. Statistical
debugging: simultaneous identification of multiple bugs, in: Proceedings of
the 23rd International Conference on Machine Learning, ICML 2006, pp.
1105–1112.

25

